If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2v^2+5v=0
a = 2; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·2·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*2}=\frac{-10}{4} =-2+1/2 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*2}=\frac{0}{4} =0 $
| (8x+5)+(4x-17)=180 | | -9t^2+180t-7=0 | | 8x^2+6x+6=78 | | 7m-(-7)=-63 | | 71/3*x=1.6/6/11 | | 4-(2x+1=3 | | 2/x-14=2/2x | | 6(x+3)-3=39 | | L(x-2)-1=L3-L(x-1) | | 3x+25+25=180 | | 4/5(-15+2b)=b/10 | | 12+3x=30-4x | | 0.4x^2+1.6x-66=0 | | 4x^2+-24x+36=0 | | x+24=3x-4 | | 3(5x+2)=114 | | 2x^2-(11/5)x=(-3/10) | | 12t(t+2)=5t-5 | | L(x-2)-1=L3-L(x-2) | | 5x-2=x+9 | | 6(y+1)-10=4(y-1+2y | | t(8)=1056 | | 4=0.5x+0.25 | | 4(x+16)+4(x+32)=24 | | 1m^2+12m=-35 | | 3(x-6)–6(x-(-8))=-3–(-8)x | | 2x–6=x+5 | | (1/36)^-3x-3=216^2x | | 6(x-96)-2(x+108)=12-8(x-36) | | -29=3x | | 4(x+3)-3(x+1)=3 | | 2/3x+8=-10-1/2x |